Space Launch Report:  SpaceX Falcon Heavy
Home    On the Pad     Space Logs     Library    Links
falconH3s.jpg (14244 bytes)SpaceX Falcon Heavy
Updated February 06, 2018

Vehicle Configurations

Vehicle Components

Flight Log

Falcon Heavy Launch from KSC LC 39A as Illustrated in Early 2015

Falcon Heavy is a planned modular growth version of the existing two-stage SpaceX Falcon 9 that should become the world's heaviest lifting rocket when it enters service.  With two strap-on liquid boosters augmenting a two-stage core, the 70 meter tall rocket will weigh 1,420 tonnes at liftoff and will rise on the combined 2,326 tonnes of sea level thrust produced by 27 Merlin 1D engines, according to the SpaceX web site. 

In a fully expendable configuration, SpaceX says that Falcon Heavy will be able to lift more than 63 tonnes to a 28.5 deg low earth orbit (LEO), or more than 26 tonnes to a  27 deg inclination geosynchronous transfer orbit (GTO) from Florida. 

Since these capabilities exceed by far any known prospective government or commercial payloads, it seems likely that SpaceX will often surrender much of this performance to recover the booster and core stages.  Heavy will be able to lift at least 8 tonnes to GTO when all three of the core stages are recovered.  During 2016-17, the company's web site showed a $90 million list price for such a launch.  Boosters would fly back to landing pads at Landing Zone 1, the former site of Cape Canaveral's Launch Complex 13, part of the original "ICBM Row".  First stages would either return to LZ 1 or land downrange on a floating platform. 

For many years Falcon Heavy details remained mysterious outside SpaceX.    

Falcon Heavy History

Since September 2005, when it originally announced plans to develop Falcon 9, SpaceX had projected future heavy-lift variants of its kerosene/LOX rocket.   Early plans would have added two Falcon 5 first stages as strap-on boosters to a central Falcon 9 first stage to create a "Falcon 9S5".  A "Falcon 9S9" would have used three parallel Falcon 9 stages.  "9S5" would have lifted more than 16 tonnes to low Earth orbit (LEO).  "9S9" would have boosted more than 24 tonnes to the same orbit. 

In 2006, SpaceX announced that it would develop a new regeneratively cooled Merlin 1C, replacing the ablatively-cooled Merlin 1B originally planned to power the Falcon family.  A new Falcon 9 Heavy, projected to be able to launch more than 29 tonnes to LEO or 15 tonnes to geosynchronous transfer orbit (GTO), resulted.  Although the Heavy did not officially enter development during this time, since the basic Falcon 9 effort was then-underway, the larger launch vehicle was always listed as part of future plans 

In April 2008, SpaceX described plans for an even more-powerful Merlin 1C that would power a "Block 2" version of Falcon 9.  The upgraded Merlin 1C would produce 56.69 tonnes of sea-level thrust and 63.45 tonnes of thrust in vacuum, a substantial increase from the 43 tonnes of sea-level thrust produced by the "Block 1" Merlin 1C.   A "Block 2" version of Falcon 9 Heavy was not announced, leading some to believe that SpaceX had shelved plans for the bigger rocket.  It was apparent, however, that a "Block 2" version, if it were developed, would be able to lift more than 30 tonnes to LEO. 

FalconHs.jpg (9859 bytes)Falcon Heavy as Announced in 2011

In 2010, the first two "Block 1" Merlin 1C-powered Falcon 9 rockets flew successfully.  The second launch orbited the COTS 1 demonstration Dragon spacecraft, which was successfully recovered after reentery.  Then, on April 5, 2011, SpaceX announced that it would develop the long-suspected "Block 2", which would essentially be a new rocket.  Press attention focused on the triple-body Falcon Heavy rocket shown in press release materials the same day, but the real story was about the new upgraded Merlin 1D engine that would power both rockets.  The new two-stage core version would become known as Falcon 9 v1.1.    

As originally announced, each of the Falcon Heavy's 27 Merlin 1D engines would produce 63.5 tonnes thrust at sea level, nearly 1.5 times more than the Merlin 1C engines that powered the first two Falcon 9 rockets.  Performance announced at the time included 53 tonnes to LEO, 19 tonnes to GTO, or 13.6 tonnes toward Mars using crossfeed.  Plans called for the first Falcon Heavy to fly a demonstration mission in 2013 from Vandenberg AFB Space Launch Complex 4 East, where the former Titan 4 pad was to be rebuilt. 

With its planned Vandenberg AFB launch site, the Falcon Heavy demonstration mission seemed designed to show the Pentagon that Falcon 9 could handle EELV-type defense missions.  Only Vandenberg could support launches to near-polar orbits typically used for reconnaissance missions.  At the same time, Elon Musk announced plans to launch Falcon Heavy from Florida, either from a reconfigured SLC 40 at Cape Canaveral or from a mothballed Shuttle pad at Kennedy Space Center.

Vandenberg Launch Site

On July 13, 2011, SpaceX broke ground on the SLC 4 East reconstruction project.  The big Titan 4 fixed and mobile towers were replaced by a "flat" pad and a new Horizontal Integration Facility (HIF).  A giant wheeled transporter-erector was built to move assembled rockets from the HIF to the pad.  The erector also served as an umbilical tower.  When it reached the pad, powerful hydraulic cylinders would erect it and the rocket. 

slc4e.jpg (26750 bytes)SLC 4E Under Construction with Transporter-Erector at Pad, HIF in Background

In the end, the SLC 4E inaugural launch was performed by the first Falcon 9 v1.1, the sixth Falcon 9.  After a five week campaign, the rocket lifted off on September 29, 2013 at 16:00 UTC with Canada's 500 kg Cassiope and with five small cubesats that together weighed about 100 kg, bound toward a planned 300 x 1,500 km x 80 deg orbit.  The flight was the first for Falcon 9 with a payload fairing, the first powered by Merlin 1D engines, the first use of the new "Octaweb" thrust section, and featured the first attempt to slow the first stage for a reentry and experimental water landing. 

The attempt was performed by re-igniting three of the first stage engines after staging, about 7 minutes 45 seconds after liftoff.  This hypersonic reentry burn slowed the stage to reduce reentry heating.  A second re-ignition of only the center engine also occurred shortly before impact with the Pacific Ocean, but roll rates on the stage quickly exceeded the control ability of the reaction control system.  The roll rate pushed propellant toward the tank edges, causing the engine to shut down.  The stage fell, impacted the ocean, and broke into pieces.  

KSC Launch Complex 39A

After the final Space Shuttle launch in 2011, which took place from Kennedy Space Center LC 39A, NASA sought parties who might be interested in using the historic launch site.  The ocean-side pad had hosted the first Saturn V launch, the first manned lunar orbital and landing missions, and the first space shuttle launch, among other accomplishments.   United Launch Alliance, SpaceX, and Blue Origin, among others, expressed interest.   In the end, NASA awarded SpaceX a 20-year lease of the site during April 2014.   The company revealed that it intended to debut Falcon Heavy on a "Demosat" mission from LC 39A. 

On May 20, 2014, NASA removed MLP 2 from LC 39A, marking the final run of a Saturn V era crawler transporter to the launch pad.  SpaceX soon took over the complex and began constructing a new HIF right on top of the crawlerway just outside the LC 39A fence line.  It also began modifying the launch pad itself, while keeping the existing service tower and rotating service structure.  Kerosene infrastructure began to be returned to the pad for the first time since the days of Saturn V.  Plans called for a transporter erector to carry Falcon Heavy from the HIF up the incline to the pad using two new railroad tracks, rather than on a wheeled transporter as at SLC 4E.  Rocket exhaust would be diverted through a rebuilt flame trench toward the north by a modified flame diverter.

SpaceX hoped to have the site ready for testing during 2015.

octawebs.jpg (28131 bytes)Falcon Heavy Description

View of Octaweb Merlin 1D Engine Configuration at SpaceX Hawthorne Factory

Falcon Heavy was expected to be based on existing Falcon 9 v1.1 hardware.  The first stage and boosters would use the Octaweb design with nine Merlin 1D engines in a circle of eight surrounding one configuration.  The stages would also be equipped with four extendable landing legs and four grid fins for recovery attempts.

Illustrations sometimes showed boosters that were longer than the core stage.  On other occasions the stages were shown to be identical.  Some illustrations showed the same second stage used by Falcon 9 v1.1.  Other drawings showed a stretched second stage.  Some reports suggested that propellant densification by cooling would be used to increase propellant loading.  As with Falcon 9 v1.1, the actual configuration would likely only become known when the rocket was erected on the launch pad for the first time.   

The actual thrust of the Merlin 1D engines became another unknown during 2015, when SES announced that its pending Falcon 9 v1.1 launch would be the first to use higher-thrust Merlin 1D engines.  Thrust was said to be increasing by 20%.  Would Falcon Heavy use these higher-thrust engines? 

The stages were expected to be 3.66 meters in diameter and to use lightweight Aluminum Lithium tanks assembled using friction stir welding machines at the Hawthorne, California factory.   The interstage, 5.2 meter diameter payload fairing, and booster nose cones, among other components, would use carbon composites.  The Merlin Vacuum second stage engine would produce 81.65 tonnes of thrust and would burn for up to 375 seconds.  The core stage would throttle back to allow the boosters to burn out and separate well before the core stage completed its burn. 

Booster and core stage recovery will apparently reduce GTO performance by about 50% from its expendable version maximum.  If only the boosters are recovered and the core first stage is expended, GTO performance will likely be reduced by about 30% from its expendable maximum.  Propellant crossfeed was not expected to be implemented at first, if ever, but was shown as an ultimate performance option.  Only time will tell which modes of operation SpaceX will end up using.  Both the viability of recovery itself and the cost effectiveness of recovery and reuse remained unproven as of February 2015.

Planned Flights

On May 29, 2012, Intelsat announced that it had selected Falcon Heavy to launch one of its satellites to GTO, becoming the first commercial customer for the rocket.  During December of the same year, Falcon Heavy won the $165 million U.S. Air Force Space Test Program 2 mission, which would fly from Florida.  This was Falcon Heavy's first government launch contract.  During July, 2014, Inmarsat announced that it had signed contracts for up to three Falcon Heavy launches to GTO, with the first satellite expected to weigh 5.9 tonnes and to fly in 2016.   In early January, 2015, ViaSat Inc. announced that it had also decided on Falcon Heavy to launch 6.4 tonne ViaSat-2 to GTO in mid-2016.  Some of these missions were later performed by Falcon 9 instead.   

The inaugural Falcon Heavy mission was expected to be a demonstration mission without a paying satellite customer from KSC LC 39A, possibly before the end of 2015 but just as likely in 2016.  Before the inaugural launch can occur, SpaceX will need to build and test Falcon Heavy.  By February 2015, the company had built structural test articles that it planned to test at its McGregor, Texas site.   A big new static test stand at McGregor, with a deep below-grade exhaust trench, would host what would likely be a long series of static tests with three clustered stages firing together for the first time.  The launch site would need to be completed and tested, a process that would culminate in the static firing of a Falcon Heavy on the launch pad. 

f921lc39a.jpg (37521 bytes)LC 39A

F9-21 First Stage in LC 39A HIF After December 2015 Landing at Cape Canaveral

During 2015 and early 2016, construction continued at LC 39A.  The HIF was completed, rail tracks were laid to the pad, and a transporter erector was assembled and tested.  A winch cable system and a pushback tug moved the transporter up the pad ramp.  The flame trench was reconfigured and a new water deluge system was installed. 

In December, 2015, the LC 39A HIF received its first occupant when the F9-21 (Orbcomm OG2) first stage - the first to land safely after a launch - moved into the hangar for inspection.  In April, 2016, the F9-23 (CRS-8) first stage also entered the HIF after its landmark recovery at sea.  Plans at the time called for this stage to perform a series of static test firings on LC 39A.

Performance Update

On April 30, 2016, SpaceX published updated Falcon Heavy performance numbers.  For the first time, Merlin 1D liftoff thrust was listed at 190,000 lbf (86.18 tonnes), resulting in a total of 5,130,000 lbf (2,326.952 tonnes) liftoff thrust for Falcon Heavy.  Payload numbers for a fully-expendable Falcon Heavy increased to 54.4 tonnes LEO x 28.5 deg, 22.2 tonnes GTO x 27 deg, and 13.6 tonnes trans-Mars.  For missions with stage recovery, GTO payload was given as 8.0 tonnes (increased from the previous 6.4 tonnes) at a price of $90 million.  Gross liftoff weight (GLOW) was listed at 1,420,788 kg.

FHmars.jpg (4727 bytes)Mars Dragon Plans Announced

Illustration of Falcon Heavy with Mars Dragon, Released April 2016

On April 27, 2016, SpaceX announced that it was planning to send a modified Dragon spacecraft to land on Mars as soon as 2018.  A Falcon Heavy would launch the Dragon, which would serve as a precursor for the company's "Red Dragon" plans.  NASA announced that it would provide technical support for the mission in exhange for access to SpaceX entry, descent and landing data. 

Lunar Mission Plans

On February 27, 2017, SpaceX announced that a Falcon Heavy would be used to launch a Dragon 2 crewed spacecraft on a circumlunar mission before the end of 2018.  The mission would send "two private citizens", who had already "paid a significant deposit" for the flight.  The company stated that NASA’s Commercial Crew Program was a "key enabler for this mission".  

2017 Performance Update

During April 2017, SpaceX again updated Falcon Heavy performance numbers.  For the fully expendable version, LEO payload rose to 63.8 tonnes, GTO payload to 26.7 tonnes, trans-Mars to 16.8 tonnes, and payload toward deep-space Pluto to 3.5 tonnes.  With booster and core recovery for reuse, GTO payload remained at 8.0 tonnes.

First Flight Vehicle

During April, 2017, B1023.2, a previously flown first stage assigned to serve as one of the side boosters for the Falcon Heavy inaugural flight, was tested at McGregor.  The stage returned to the test stand in mid-May for a second test after data from the first firing was reviewed.  Meanwhile, B1033, the first Falcon Heavy core stage, was test fired during the first week of May.  SpaceX posted a video of the core test firing.


Falcon Heavy 1 (SpaceX)Falcon Heavy Debut

Long delayed, long anticipated, the first SpaceX Falcon Heavy performed its Demo Mission from Kennedy Space Center Launch Complex 39 Pad A on February 6, 2018. Flying in a one-off interim configuration using two older used boosters and a new core first stage, the roughly 1,400 tonne, 70 meter tall triple-barrel rocket lifted off at 20:45 UTC on 2,128 tonnes (4.7 million pounds) of thrust created by a total of 27 Merlin 1D engines, 9 on each core/booster stage. Future operational Falcon Heavies will produce more thrust and will use the more-advanced "Block 5" stages.

Elon Musk's used Tesla roadster, which typically weighs 1,250 kg on the street in driveable configuration, served as a non-seperating simulated payload mass atop the second stage. The second stage performed three burns during the six hour mission to accelerate itself and the Tesla into a heliocentric orbit ranging from the orbit of Earth to beyond Mars. An important goal of the mission was to demonstrate a long coast between the second and third burns, an ability needed for some DoD EELV Heavy class missions for which SpaceX hopes to compete.

Falcon Heavy 1 (SpaceX)Given a 50-50 chance of success by its creator on this inaugural flight, Falcon Heavy checked off mission milestones as it rose cleanly from its reconfigured launch pad, passed through Max-Q, and survived booster shutdown (2 min 29 sec) and separation (2 min 33 sec). The core stage, having flown at a lower throttle setting during much of its burn, continued on for another 25 seconds after booster cutoff before it, too, shut down and seperated.

The second stage ignited at 3 min 15 sec and burned until 8 min 31 sec to reach a temporary parking orbit. The stage was scheduled to perform its second burn beginning at 28 min 22 sec and lasting 30 seconds. It was subsequently tracked in a 180 x 6,951 km x 29.0 deg elliptical orbit, where it circled the Earth for about 5.5 hours before igniting a third time, at second perigee over South America. During the coast, SpaceX webcast live video of the roadster, complete with space-suited dummy driver, floating through space with the Earth, Moon, and Sun periodically filling the background.

Falcon Heavy Booster Landings (SpaceX)The two side boosters both performed three-engine boost-back and reentry burns, and single-engine landing burns, to land side-by-side at Cape Canaveral Landing Zone 1 and 2, creating a surreal, science-fiction-like sight. The core booster performed three-engine boost-back and reentry burns, and attempted a three-engine landing burn, aimed toward landing on the converted barge "Of Course I Still Love You", but two of the engines failed to ignite for landing and the stage crashed into the Atlantic.

The Falcon Heavy Demo vehicle consisted of side booster B1023.2, side booster B1025.2, and new core stage B1033.1. The side boosters were originally "Block 2" variants while the core was a "Block 3" version. Future Falcon Heavies will likely use "Block 5" stages.

B1023.2 was previously used during the May 27, 2016 Thaicom 8 launch, when it landed on OSCILY. B1025.2 boosted the CRS-9 mission on July 18, 2016, landing at LZ 1. Both cores returned to Hawthorne for refurbishment and conversion into the side core configuration, with sleek nose cones added in place of their interstage sections. B1023.2 was static tested at McGregor during mid-April 2017. B1025.2 was tested at McGregor on August 29, 2017. Both spent the intervening months in the KSC LC 39A HIF. The B1033 core stage was test fired at McGregor during early May, 2017. Its second stage was tested around the same period.

Falcon Heavy was assembled in the HIF and rolled to the pad for the first time for mechanical fit checks on December 28, 2017. A propellant loading test was attempted, but aborted, on January 11, 2018. A second attempt was stopped on January 14 and a third on January 20. Finally, on January 24, a successful propellant loading test ended with a successful static firing that lasted about 8 to 10 seconds. The February 6 launch occurred on the first attempt, though high winds at altitude delayed the launch by several hours.

Elon Musk said that SpaceX spent about $500 million on Falcon Heavy development leading to the Demo Flight.

A total of 23 Falcon 9 or Falcon Heavy core and booster stages have now been recovered in 29 attempts, including 2 of 3 Falcon Heavy stage landing tries. Four of the successful landings have been on "Just Read the Instructions" off California, 10 at Cape Canaveral LZ 1, one at LZ 2, and eight on the drone ship "Of Course I Still Love You" off Florida. Seventeen first stages have been recovered. Eight have flown twice, but two have now been purposefully expended during their second flights. All of the recovered stages have been v1.2 types.

Vehicle Configurations

(metric tons)
185 km x
(1) 28.5 deg (CC)
(2) 98 deg (VA)
(3) 9.1 deg (KW)
Transfer Orbit
(metric tons)
185x35,788 km
x 27 deg
~1,800 m/s
from GEO
C3=~10 km2/s2
Configuration Liftoff
(metric tons)

Price (2014)

Falcon Heavy 63.8 t (1) 26.7 t 16.8 t 3 Falcon 9v1.2xMerlin 1D cores
+ 1xMerlinVac Upper Stage + PLF
70 m 1,420.788 t ~$150 m
Falcon Heavy Recoverable - 8.0 t - 3 Falcon 9v1.2xMerlin 1D cores
+ 1xMerlinVac Upper Stage + PLF
70 m 1,420.788 t $90 m

Vehicle Components

Falcon Heavy
Booster (each)
Merlin 1D
Falcon Heavy
Stage 1
Merlin 1D
Falcon Heavy
Stage 2
Merlin 1D Vacuum
Diameter (m) 3.66 m 3.66 m 3.66 m
Length (m) ~42.6 m (est)
not incl I/S
~42.6 m (est)
not incl I/S
~12.6 m (est)
incl I/S
Empty Mass (tonnes)
 ~17 t?
 ~17 t?
Propellant Mass Used (tonnes) ~407.6 t? ~407.6 t? ~107.2 t?
Total Mass (tonnes) ~424.6 t? ~424.6 t? ~111.7 t?
Engine Merlin 1D
Merlin 1D
Merlin 1D Vac
Engine Mfgr SpaceX
Fuel RP1
Oxidizer LOX LOX LOX
(SL tons)
775.650 t
775.650 t

(Vac tons)
838.927 t 838.927 t 95.255 t
ISP (SL sec) ~285 s ~285 s -
ISP (Vac sec) ~312 s ~312 s ~348s
Burn Time (sec) ~162 ~162 s ~375 s
No. Engines 9 9 1
Nonrecoverable Version.
Add ~2-3 t Dry Mass for
Recoverable Version.
Throttle Range 70-100%
Nonrecoverable Version.
Add ~2-3 t Dry Mass for
Recoverable Version.
Throttle Range 70-100%


        Falcon 9

Diameter (m)       5.2 m
Length (m)       13.9 m
Empty Mass (tonnes)
      ~ 2.0 t?

Falcon Heavy Flight Log

Date     Vehicle       No.   Payload               Mass   Site    Orbit (kmxkmxdeg)
02/06/18 Falcon Heavy  FH-1  Demo Mission                 KC 39A                 HCO

--/--/-- Falcon Heavy  FH-2  STP-2 (GPIM)                 KC 39A                 ???
--/--/-- Falcon Heavy  FH-3  ViaSat 2              5.9 t  KC 39A                 GTO
--/--/-- Falcon Heavy  FH-x  Arabsat 6A                   KC 39A                 GTO
--/--/-- Falcon Heavy  FH-x  Dragon 2 (circumlunar)       KC 39A                 TLI
KC = Kennedy Space Center, Florida
VA = Vandenberg AFB, California


Falcon 9 Data Sheets, SpaceX, 2008-2016
Falcon 9 Users Guide, SpaceX, 2009, 2015
Falcon Family Brochure, SpaceX, 2011
Updates at