Space Launch Report: H-IIA/B Data Sheet | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Home On the Pad Space Logs Library Links | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
H-IIA/B
H-IIA and H-IIB are Japan's primary launch vehicles. H-IIA was an improved version of H-II, the country's first liquid hydrogen fueled booster. H-IIB replaced the H-IIA single-engine first stage with a wider body, dual-engine stage. H-2 F2 Two-and-one-half stage H-II could boost 4 metric tons into geosynchronous transfer orbit (GTO). H-IIA could lift nearly 6 tonnes . H-IIB could haul 8 tonnes. National Space Development Agency of Japan (NASDA)
launched the first H-II on February 3, 1994. Six more flew during the next five years. The
first five H-IIs succeeded, but the last two failed. The rocket, which consisted of 4
meter diameter first and second stages augmented by a pair of segmented solid rocket
boosters (SRBs), turned out to be both costly and complex. Cost reduction was the primary
reason that NASDA developed H-IIA. H-2A TF2 was a 2024 model with two SRB-A and four SSB strap-on boosters. The standard H-IIA, dubbed H2A202, used simplified, lower-cost core motors and new, single-segment, lower-cost strap-on solid rocket boosters (SRB-As) to put 4.1 tons into GTO or 10 tons into low earth orbit (LEO). H2A202 weighed 287 tons at liftoff, excluding payload, and stood 52.5 meters tall. During the first 100 seconds of flight, the rocket was powered by two SRB-A strap-ons producing 230 tons vacuum thrust each to augment the single LE-7A core stage engine's 112 tons vacuum thrust. LE-7A, a staged combustion cycle engine that could throttle, ignited on the launch pad and burned for 400 seconds. The single-chamber engine gimbaled for pitch and yaw control. Auxiliary jets, fed by low-mixture ratio gas from the main engine preburner mixed with hydrogen gas, provided first stage roll control. The H-IIA second stage was modified in several ways from
its H-II precursor. It was powered by a simplified, multi-restartable LE-5B LOX/LH2
engine, which provided 14 tons thrust for up to 534 seconds. LE-5B gimbaled for pitch and
yaw control while the second stage reaction control system (RCS) used hydrazine jets for
roll control during powered flight and for roll/pitch/yaw control during unpowered flight.
H-2A F11, flown in 2006, was the first, and by 2014 only, H-2A 204 model with four SRB-A boosters. The second stage used a simplified structure, consisting of separate propellant tanks held together by 24 carbon composite support trusses. (H-II's second stage tanks used a more difficult to manufacture common bulkhead.) The upper, 4-meter diameter second stage LH2 tank, built by Mitsubishi Heavy Industries (MHI), was essentially the same structure supplied by MHI to Boeing for its Delta III and Delta IV-M second stage LH2 tanks. An elliptical LOX tank, roughly 3 meters in diameter, sat below the LH2 tank and was housed within the intertank structure until the first stage fell away. The H-IIA strap-down inertial guidance system, located on the second stage, controled the entire vehicle during flight. H-IIA growth versions soon entered service. H2A2022, with two additional smaller solid strap on boosters (SSB), could boost 4.5 tons to GTO. H2A2024 used four SSBs to put 5 tons into GTO. H2A204, with four SRB-As, could put 6 tons into GTO. Larger versious of H-IIA were studied, but dropped. Initial concepts for an H2A212 variant consisted of a standard H-IIA with a parallel liquid rocket booster (LRB) powered by two LE-7A engines, capable of boosting 6 tons to GTO. This was replaced by plans to build an "H-IIB" with a larger, 5.2 meter diameter first stage powered by two LE-7A engines. H-IIA was stacked vertically in the Yoshinobu Launch Complex Vehicle Assembly Building at Tanegashima, a building that was enlarged to two bays for the H-IIA program. On launch day it was rolled on a massive, rubber-wheeled mobile launch table to one of two seaside launch pads. For H-IIA, a second pad was added near the original H-II pad. Tanegashima launches could take place only during 190 days each year during January-February and June-September, and November-December due to agreements with local fisherman. The first H-IIA lifted off in 2001. After five
successful missions, the sixth H-IIA, launched in 2003, failed to reach orbit. That
failure occurred when one of two SRB-A boosters failed to separate. The root cause of this
failure was an insulation burn-through on the SRB-A nozzle that allowed hot gases to
damage a separation detonating fuse. When the time came for the SRB-A to jettison, the
fuse failed to fire and the solid booster remained attached to the first stage. The rocket
continued to fly down range, with the second stage separating and starting, but the extra
mass robbed the vehicle of so much velocity that it was not possible to reach orbit. A
range safety destruct command was transmitted 11 minutes into the flight. H-2A F23 was an example of the common "Standard" H-2A 202 that commonly flew after 2008. H-IIA successfully returned to flight with a beefed up SRB-A design in 2005. In 2007, H-IIA F13 successfully launched Japan's first large lunar orbiter, SELENE (KAGUYA), "The largest lunar mission since the Apollo program". The SELENE complex weighed about 3.09 tonnes at liftoff, making it the heaviest lunar explorer since Luna 24 in 1976. H-IIA F14, a 2024 model used to launch the KIZUNA "Internet satellite" to GTO in 2008, used improved SRB-A booster nozzles and a new LE-5B-2 (improved LE-5B) second stage engine. The changes increased SRB-A vacuum specific impulse from 280 seconds to 282.5 seconds. The LE-5B-2 engine provided 448 second specific impulse, a 1 second improvement from LE-5B. The changes allow more payload. KIZUNA weighed 4.85 tonnes at liftoff. H-2A was formerly rated for only 4.7 tonnes to GTO. After 2008, use of SSB motors was discontinued,
resulting in retirement of the 2022 and 2024 types. Seven 2024 launches and three
2022 launches took place between 2002 and 2008. H-IIB was developed to launch Japan's H-II Transfer Vehicle (HTV), an unmanned spacecraft designed to haul cargo to the International Space Station. HTV, which weighed up to 16.5 tonnes, could haul up to 6 tonnes of wet and dry cargo. H-IIB consisted of a 5.2 meter diameter core stage, powered by two LE-7A engines, that was augmented by four SRB-A strap on motors. The second stage was essentially the same as the H-IIA version. A new 5.1 meter diameter payload fairing was used for the initial HTV flights. In addition to its LEO heavy lifting capability, the more powerful H-IIB rocket could lift up to 8 tonnes to GTO. This ability made H-IIB the third most capable GTO launch vehicle in the world, after Delta IV Heavy and Ariane 5 ECA. Japan Aerospace Exploration Agency (JAXA) launched its first H-2B launch vehicle, carrying Japan's first HTV ISS cargo spacecraft, from Tanegashima Space Center on September 10, 2009. The 56.6 meter tall, 531 tonne 2.5 stage rocket lifted off from Yoshinobu Launch Pad 2 at 17:01 UTC to start H-2B Test Flight 1. HTV-1 entered a 51.6 degree inclination low earth orbit about 15 minutes later. All four SRB-A boosters ignited on the pad and burned
for 1 minute 50 seconds. The twin LE-7A engines burned for 5 minutes 47
seconds. The 4 meter diameter second stage, powered by a single LE-5B LOX/LH2
engine, burned for about 8 minutes 13 seconds to inject HTV-1 into orbit.
* GEO:
Geosynchronous Earth Orbit
** Beginning with F14 DATE VEHICLE ID PAYLOAD MASS(t) SITE* ORBIT** ------------------------------------------------------------------------------------- 02/03/94 H-2 1F OREX 3.256 TA Y1 GTO [1a] 08/28/94 H-2 2F ETS-6/LAPS 3.80 TA Y1 GTO [1b] 03/18/95 H-2+SSB 3F SFU/GMS-5 4.747 TA Y1 GTO [1c] 08/17/96 H-2 4F ADEOS/JAS 2 3.70 TA Y1 LEO/S 11/27/97 H-2 6F TRMM/ETS-7 6.52 TA Y1 LEO [1d] 02/21/98 H-2 5F COMETS 3.90 TA Y1 [EEO] [1] 11/15/99 H-2S [LE5B] 8F MTSAT 2.90 TA Y1 [FTO] [2] 08/29/01 H-2A-202 TF1 VEP-2/LRE 4.00? TA Y1 GTO 02/04/02 H-2A-2024 TF2 MDS/DASH 0.572 TA Y1 GTO [3a] 09/10/02 H-2A-2024 TF3 USERS/DRTS 3.30 TA Y1 GTO [3b] 12/14/02 H-2A-202 TF4 ADEOS 2/3xusats 3.856 TA Y1 LEO/S 03/28/03 H-2A-2024 F5 IGS-Optical 1/Radar 1 2.05 TA Y1 LEO/S 11/29/03 H-2A-2024 F6 IGS-Optical/Radar 2.05 TA Y1 [FTO] [3] 02/26/05 H-2A-2022 F7 MT-Sat 1R 3.30 TA Y1 GTO 01/24/06 H-2A-2022 F8 ALOS 4.00 TA Y1 LEO/S 02/18/06 H-2A-2024 F9 MTSAT-2 4.65 TA Y1 GTO 09/11/06 H-2A-202 F10 IGS-Optical 2 0.85 TA Y1 LEO/S 12/18/06 H-2A-204 F11 ETS-8 5.80 TA Y1 GTO 02/24/07 H-2A 2024 F12 IGS-Radar 2/Optical 3V ~2.05 TA Y1 LEO/S 09/14/07 H-2A-2022 F13 SELENE Lunar Orbiter 3.09 TA Y1 HTO 02/23/08 H-2A/2024 F14 KIZUNA (WINDS) 4.85 TA Y1 GTO 01/23/09 H-2A-202 F15 GOSAT (Ibuki) 1.98 TA Y1 LEO/S 09/10/09 H-2B-304 TF1 HTV 1 16.00 TA Y2 LEO/ISS[4] 11/28/09 H-2A-202 F16 IGS Optical 3 - TA Y1 LEO/S 05/20/10 H-2A-202 F17 Akatsuki/Ikaros 0.81 TA Y1 HCO [5] 09/11/10 H-2A-202 F18 Michibiki 4.00 TA Y1 GTO/i 01/22/11 H-2B-304 F2 HTV-2 16.00 TA Y2 LEO/ISS 09/23/11 H-2A-202 F19 IGS-Optical 4 - TA Y1 LEO/S 12/12/11 H-2A-202 F20 IGS-Radar 3 - TA Y1 LEO/S 05/17/12 H-2A-202 F21 GCOM W1/Kompsat 3 2.848 TA Y1 LEO/S 07/21/12 H-2B-304 F3 HTV-3(Kounotori) 15.90 TA Y2 LEO/ISS 01/27/13 H-2A-202 F22 IGS Radar 4/Optical 5 - TA Y1 LEO/S 08/03/13 H-2B-304 F4 HTV-4 15.90 TA Y2 LEO/ISS 02/27/14 H-2A-202 F23 GPM Core Observatory 3.85 TA Y1 LEO 05/24/14 H-2A-202 F24 ALOS 2 + 4usats 2.275 TA Y1 LEO/S 10/07/14 H-2A-202 F25 Himawari 8 3.5 TA Y1 GTO ------------------------------------------------------------------------------------- NOTES: [1a] Test flight sent 2.39 tonne Vehicle Evaluation Payload (VEP) dummysat to GTO and 0.865 tonne Orbital Re-entry Experiment (OREX) to LEO. OREX completed one orbit and reentered to acquire re-entry data for HOPE spaceplane project. [1b] H-2 successfully inserted ETS 6 (Engineering Test Satellite) and its LAPS (Liquid Apogee Propolsion Stage) into GTO, but LAPS failed to raise orbit to GEO. Left in 8,565 x 38,677 km x 13.23 deg orbit. ETS 6 weighed 2 tonnes. LAPS weighed 1.8 tonnes. [1c] GMS 5 (Geostationary Meteorological Satellite) and Star 27 AKM weighing 0.747 tonnes were placed into GTO. SFU 1 (Space Flyer Unit) weighing 4 tonnes placed in LEO x 28.4 deg. SFU 1 was retrieved by STS-72 on 01/13/96. [1d] TRMM (Tropical Rainfall Measuring Mission) weighed 3.62 tonnes. ETS 7 docking experiment consisted of 2.5 tonne target and 0.4 tonne chaser. All placed in LEO x 35 deg. [1] COMETS (Communication Engineering Test Satellite) left in unusable orbit. The second Stage 2 burn cut off after 44 seconds instead of planned 3m 12s due to LE-5A engine nozzle failure. [2] 1st stg engine H2 leak, failed at T + 4 minutes. [3a] DASH (Demonstrator of Atmospheric reentry System with Hyperbolic velocity) was intended for LEO reentry test, but failed to separate. [3b] 2.8 tonne DRTS (Data Relay Test Satellite) to GTO. 0.5 tonne USERS (Unmanned Space Experiment Recovery System) to LEO for reentry test. [3] One SRB-A failed to separate. RSO signal transmitted at T + 11 minutes. [4] First H-2B with dual-engine core, carrying first HTV 1 cargo spacecraft to ISS. [5] Akatsuki toward Venus orbit. Ikaros a solar sail demonstrator in HCO ABBREVIATIONS: [FTO]: Failed to Orbit [EEO]: Unintended Eliptical Earth Orbit [GTO]: Unintended Geosynchronous Transfer Orbit [LEO]: Unintended/Improper Low Earth Orbit "KA" = Kagoshima Space Center "TA" = Tanegashima Space Center "Y" = Yoshinobu Launch Complex References H-IIA Brief Description, NASDA, December 2001 Last Update: October 7, 2014 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||